Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(9): 2065-2075, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391132

RESUMO

The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.


Assuntos
Luz , Fotorreceptores Microbianos , Prótons , Fotorreceptores Microbianos/química , Transporte de Elétrons , Compostos Orgânicos , Flavinas/química , Proteínas de Bactérias/química
2.
Heliyon ; 10(2): e22772, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298668

RESUMO

Purpose: Sepsis-induced acute lung injury is related to high mortality. MiR-2113 possesses important functions in human diseases. This research aimed to clarify the role and mechanism of miR-2113 in sepsis-induced acute lung injury. Methods: The expression of miR-2113 in lipopolysaccharide (LPS)-induced MLE-12 cells, serum of sepsis patients, and cecal ligation and puncture mouse models was examined using quantitative real-time PCR. The functions of miR-2113 in LPS-treated MLE-12 cells were estimated by Cell Counting Kit-8 assay, flow cytometry, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence. The influences of miR-2113 in cecal ligation and puncture-induced acute lung injury in mice were assessed by hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, acute pulmonary dysfunction analysis, lactate dehydrogenase levels and total protein concentrations in bronchoalveolar lavage fluid, and Masson staining. Also, the mechanism of miR-2113 was examined using a dual-luciferase reporter assay. Results: MiR-2113 expression was decreased in LPS-induced MLE-12 cells, serum of sepsis patients, and cecal ligation and puncture mouse models. miR-2113 overexpression restored LPS-reduced MLE-12 cell proliferation, but alleviated LPS-induced apoptosis and markers of inflammation and fibrosis in MLE-12 cells. Moreover, we found that miR-2113 mimic reduced LPS-induced MLE-12 cell injury by negatively regulating high-mobility group box 1. In vivo data further confirmed that miR-2113 overexpression alleviated acute pulmonary dysfunction, inflammation and fibrosis in cecal ligation and puncture-induced sepsis mice. Conclusion: MiR-2113 relieved sepsis-induced acute pulmonary dysfunction, inflammation and fibrosis through decreasing high-mobility group box 1.

3.
Nat Commun ; 15(1): 623, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245518

RESUMO

Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial. Here, we incorporate site-specific fluorinated Trp into three BLUF proteins, i.e., AppA, OaPAC and SyPixD, and characterize the percentages for the Wout, WinNHin and WinNHout conformations using 19F nuclear magnetic resonance spectroscopy. Using femtosecond spectroscopy, we identify that one key WinNHin conformation can introduce a branching one-step proton transfer in AppA and a two-step proton transfer in OaPAC and SyPixD. Correlating the flavin quenching dynamics with the active-site structural heterogeneity, we conclude that the quenching rate is determined by the percentage of WinNHin, which encodes a Tyr-Gln configuration that is not conducive to proton transfer.


Assuntos
Luz , Prótons , Transporte de Elétrons , Conformação Molecular , Flavinas/química , Proteínas de Bactérias/metabolismo
4.
J Am Chem Soc ; 146(4): 2748-2756, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38214454

RESUMO

Controlling the enantioselectivity of hydrogen atom transfer (HAT) reactions has been a long-standing synthetic challenge. While recent advances on photoenzymatic catalysis have demonstrated the great potential of non-natural photoenzymes, all of the transformations are initiated by single-electron reduction of the substrate, with only one notable exception. Herein, we report an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins using a novel mutant of gluconobacter ene-reductase (GluER-W100F-W342F). Compared to known photoenzymatic systems, our approach does not rely on the formation of an electron donor-acceptor complex between the substrates and enzyme cofactor and simplifies the reaction system by obviating the addition of a cofactor regeneration mixture. More importantly, the GluER variant exhibits high reactivity and enantioselectivity and a broad substrate scope. Mechanistic studies support the proposed oxidation-initiated mechanism and reveal that a tyrosine-mediated HAT process is involved.


Assuntos
Alcenos , Elétrons , Estereoisomerismo , Oxirredução , Hidrogênio , Catálise
5.
BMC Cardiovasc Disord ; 23(1): 542, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940847

RESUMO

BACKGROUND: The purpose of this study was to explore the association between serum anion gap (SAG) and acute kidney injury (AKI) after coronary artery bypass grafting (CABG) in patients with acute coronary syndrome (ACS) in the Intensive Care Unit (ICU). METHODS: We retrospectively analyzed the clinical data of 2,428 ACS patients who underwent CABG in the Medical Information Mart for Intensive Care IV (Mimic-IV) database. The endpoint of this study was AKI after CABG. The baseline data of the two groups (non-AKI group vs. AKI group) was compared, and the restricted cubic spline (RCS) plot, multivariable logistic regression model, and subgroup analysis were used to explore the relationship between SAG and the risk of AKI after CABG. RESULTS: In the adjusted multivariate logistic regression model, SAG was an independent predictor of AKI after CABG (OR = 1.12, 95% CI: 1.02-1.23, P = 0.015). The RCS revealed that the relationship between SAG levels and risk of AKI was J-shaped. When the SAG was ≥ 11.58 mmol/L, the risk of AKI increased by 26% for each unit increase in SAG. Additionally, we further divided the SAG into quartiles. In the fully adjusted model, compared with the first quartile of SAG, the odds ratios (ORs) and 95% confidence intervals (CIs) for AKI risk across the SAG quartiles were 0.729 (0.311, 1.600), 1.308 (0.688-2.478), and 2.221 (1.072, 4.576). CONCLUSIONS: The SAG level was associated with the risk of AKI after CABG in a J-shaped curve in the ICU. However, the underlying causes of the problem need to be investigated.


Assuntos
Síndrome Coronariana Aguda , Injúria Renal Aguda , Humanos , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/cirurgia , Síndrome Coronariana Aguda/complicações , Estudos Retrospectivos , Equilíbrio Ácido-Base , Ponte de Artéria Coronária/efeitos adversos , Fatores de Risco , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(11): 1229-1232, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-37987137

RESUMO

Mechanical ventilation has, since its introduction into clinical practice, undergone a major evolution from controlled ventilation to diverse modes of assisted ventilation. Conventional mechanical ventilators depend on flow sensors and pneumatic pressure and controllers to complete the respiratory cycle. Neurally adjusted ventilatory assist (NAVA) is a new form of assisted ventilation in recent years, which monitors the electrical activity of the diaphragm (EAdi) to provide an appropriately level of pressure support. And EAdi is the best available signal to sense central respiratory drive and trigger ventilatory assist. Unlike other ventilation modes, NAVA breathing instructions come from the center. Therefore, NAVA have the synchronous nature of the breaths and the patient-adjusted nature of the support. Compared with traditional ventilation mode, NAVA can efficiently unload respiratory muscles, relieve the risk of ventilator-induced lung injury (VILI), improve patient-ventilator coordination, enhance gas exchange, increase the success rate of weaning, etc. This article reviews the research progress of NAVA in order to provide theoretical guidance for clinical applications.


Assuntos
Suporte Ventilatório Interativo , Humanos , Respiração Artificial , Respiração com Pressão Positiva , Diafragma/fisiologia , Músculos Respiratórios/fisiologia
8.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212400

RESUMO

Phototriggers are useful molecular tools to initiate reactions in enzymes by light for the purpose of photoenzymatic design and mechanistic investigations. Here, we incorporated the non-natural amino acid 5-cyanotryptophan (W5CN) in a polypeptide scaffold and resolved the photochemical reaction of the W5CN-W motif using femtosecond transient UV/Vis and mid-IR spectroscopy. We identified a marker band of ∼2037 cm-1 from the CN stretch of the electron transfer intermediate W5CN·- in the transient IR measurement and found UV/Vis spectroscopic evidence for the W·+ radical at 580 nm. Through kinetic analysis, we characterized that the charge separation between the excited W5CN and W occurs in 253 ps, with a charge-recombination lifetime of 862 ps. Our study highlights the potential use of the W5CN-W pair as an ultrafast phototrigger to initiate reactions in enzymes that are not light-sensitive, making downstream reactions accessible to femtosecond spectroscopic detection.


Assuntos
Cinética , Transporte de Elétrons
9.
J Am Chem Soc ; 145(6): 3394-3400, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36722850

RESUMO

Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.


Assuntos
Luz , Prótons , Análise Espectral , Triptofano
10.
Proc Natl Acad Sci U S A ; 119(26): e2203996119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737837

RESUMO

Proton-coupled electron transfer (PCET) is key to the activation of the blue light using flavin (BLUF) domain photoreceptors. Here, to elucidate the photocycle of the central FMN-Gln-Tyr motif in the BLUF domain of OaPAC, we eliminated the intrinsic interfering W90 in the mutant design. We integrated the stretched exponential function into the target analysis to account for the dynamic heterogeneity arising from the active-site solvation relaxation and the flexible H-bonding network as shown in the molecular dynamics simulation results, facilitating a simplified expression of the kinetics model. We find that, in both the functional wild-type (WT) and the nonfunctional Q48E and Q48A, forward PCET happens in the range of 105 ps to 344 ps, with a kinetic isotope effect (KIE) measured to be ∼1.8 to 2.4, suggesting that the nature of the forward PCET is concerted. Remarkably, only WT proceeds with an ultrafast reverse PCET process (31 ps, KIE = 4.0), characterized by an inverted kinetics of the intermediate FMNH˙. Our results reveal that the reverse PCET is driven by proton transfer via an intervening imidic Gln.


Assuntos
Transporte de Elétrons , Flavinas , Luz , Flavinas/genética , Flavinas/metabolismo , Simulação de Dinâmica Molecular , Prótons
11.
Oxid Med Cell Longev ; 2022: 3344569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633882

RESUMO

Methamphetamine (Meth), a central nervous system (CNS) stimulant with strong neurotoxicity, causes progressive cognitive impairment with characterized neurodegenerative changes. However, the mechanism underlying Meth-induced pathological changes remains poorly understood. In the current study, Meth elicited a striking accumulation of the pathological proteins hyperphosphorylated tau (p-tau) and amyloid beta (Aß) in primary hippocampal neurons, while the activation of autophagy dramatically ameliorated the high levels of these pathological proteins. Interestingly, after the Meth treatment, Aß was massively deposited in autophagosomes, which were remarkably trapped in early endosomes. Mechanistically, syntaxin 17 (Stx17), a key soluble n-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor (SNARE) protein responsible for autophagosome and mature endosome/lysosome fusion, was significantly downregulated and hindered in combination with autophagosomes. Notably, adenovirus overexpression of Stx17 in primary neurons facilitated autophagosome-mature endosome/lysosome fusion, which dramatically reversed the Meth-induced increases in the levels of p-tau, Aß, beta-secretase (Bace-1), and C-terminal fragments (CTFs). Immunofluorescence assays showed that Stx17 retarded the Meth-induced Aß, p-tau, and Bace-1 accumulation in autophagosomes and facilitated the translocation of these pathological proteins to lysosomes, which indicated the importance of Stx17 via enhanced autophagosome-mature endosome/lysosome fusion. Therefore, the current study reveals a novel mechanism involving Meth-induced high levels of pathological proteins in neurons. Targeting Stx17 may provide a novel therapeutic strategy for Meth-induced neurodegenerative changes.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Hipocampo , Metanfetamina , Neurônios , Proteínas Qa-SNARE , Proteínas tau , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/metabolismo , Autofagia/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Metanfetamina/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Proteínas Qa-SNARE/metabolismo , Proteínas tau/metabolismo
12.
Biotechnol Appl Biochem ; 69(2): 735-748, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33734482

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic airway disorder mainly resulted from cigarette smoke exposure. The dysregulated circular RNAs (circRNAs) are relevant to the pathogenesis of COPD. This study aims to explore the function and mechanism of circRNA hsa_circ_0006892 (circ_0006892) in cigarette smoke extract (CSE)-induced bronchial epithelial injury. The lung tissues were collected from 17 nonsmokers and 23 smokers with COPD. The bronchial epithelial cells (BEAS-2B and 16HBE) were stimulated via CSE. Circ_0006892, microRNA-24 (miR-24), and PH domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) abundances were examined via a quantitative reverse transcription polymerase chain reaction or Western blot. Cell viability, apoptosis, and inflammatory response were assessed via cell counting kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA). The target relationship of miR-24 and circ_0006892 or PHLPP2 was tested via dual-luciferase reporter analysis, RNA immunoprecipitation, and RNA pull-down. Circ_0006892 expression was reduced in lung tissues of smokers with COPD and CSE-stimulated bronchial epithelial cells. Circ_0006892 overexpression alleviated CSE-induced viability reduction and promotion of apoptosis and inflammatory response. MiR-24 was bound via circ_0006892, and miR-24 overexpression reversed the effect of circ_0006892 on CSE-induced injury. PHLPP2 was targeted via miR-24, and miR-24 knockdown mitigated CSE-induced viability reduction and promotion of apoptosis and inflammatory response via regulating PHLPP2. Circ_0006892 could promote PHLPP2 expression via regulating miR-24. Circ_0006892 attenuated CSE-induced bronchial epithelial cell apoptosis and inflammatory response via regulating miR-24/PHLPP2 axis.


Assuntos
Fumar Cigarros , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Apoptose , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Circular/genética , Nicotiana/metabolismo
13.
Angew Chem Int Ed Engl ; 61(10): e202114423, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927328

RESUMO

We present direct observation of ultrafast proton rocking in the central motif of a BLUF domain protein scaffold. The mutant design has taken consideration of modulating the proton-coupled electron transfer (PCET) driving forces by replacing Tyr in the original motif with Trp, in order to remove the interference of a competing electron transfer pathway. Using femtosecond pump-probe spectroscopy and detailed kinetics analysis, we resolved an electron-transfer-coupled Grotthuss-type forward and reverse proton rocking along the FMN-Gln-Trp proton relay chain. The rates of forward and reverse proton transfer are determined to be very close, namely 51 ps vs. 52 ps. The kinetic isotope effect (KIE) constants associated with the forward and reverse proton transfer are 3.9 and 5.3, respectively. The observation of ultrafast proton rocking is not only a crucial step towards revealing the nature of proton relay in the BLUF domain, but also provides a new paradigm of proton transfer in proteins for theoretical investigations.


Assuntos
Adenilil Ciclases/química , Flavina-Adenina Dinucleotídeo/química , Luz , Prótons , Adenilil Ciclases/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Oscillatoria/enzimologia , Domínios Proteicos
14.
Exp Cell Res ; 405(1): 112635, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051241

RESUMO

Exosomes have been shown to have therapeutic potential for cerebral ischemic diseases. In this study, we investigated the neuroprotective effects of normoxic and hypoxic bone marrow mesenchymal stromal cells-derived exosomes (N-BM-MSCs-Exo and H-BM-MSCs-Exo, respectively) on oxygen-glucose deprivation (OGD) injury in mouse neuroblastoma N2a cells and rat primary cortical neurons. The proportions of dead cells in N2a and primary cortical neurons after OGD injury were significantly increased, and N-BM-MSCs-Exo (40 µg/ml) could reduce the ratios, noteworthily, the protective effects of H-BM-MSCs-Exo (40 µg/ml) were more potent. Western blotting analysis indicated that N-BM-MSCs-Exo decreased the expression of NLRP3, ASC, Caspase-1, GSDMD-N, cleaved IL-1ß and IL-18 in N2a cells. However, H-BM-MSCs-Exo (40 µg/ml) was more powerful in inhibiting the expression of these proteins in comparison with N-BM-MSCs-Exo. Similar results were obtained in primary cortical neurons. Immunofluorescence assays showed that after N-BM-MSCs-Exo and H-BM-MSCs-Exo treatment, the co-localization of NLRP3, ASC, Caspase-1 and the GSDMD translocation from the nucleus to the cytoplasm and membrane after OGD injury were reduced in N2a cells and primary cortical neurons, and H-BM-MSCs-Exo had a more obvious effect. In addition, N-BM-MSCs-Exo and H-BM-MSCs-Exo significantly reduced lactate dehydrogenase (LDH) release and the IL-18 levels in cell culture medium in N2a cells and primary cortical neurons. Once again H-BM-MSCs-Exo induced these effects more potently than N-BM-MSCs-Exo. All of these results demonstrated that N-BM-MSCs-Exo and H-BM-MSCs-Exo have significant neuroprotective effects against NLRP3 inflammasome-mediated pyroptosis. H-BM-MSCs-Exo has a more pronounced protective effect than N-BM-MSCs-Exo and may be used to ameliorate the progression of cerebral ischemia and hypoxia injury in patients.


Assuntos
Exossomos/fisiologia , Hipóxia/fisiopatologia , Células-Tronco Mesenquimais/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroblastoma/prevenção & controle , Neurônios/citologia , Piroptose , Animais , Córtex Cerebral/citologia , Córtex Cerebral/imunologia , Córtex Cerebral/lesões , Córtex Cerebral/metabolismo , Glucose/deficiência , Inflamassomos/fisiologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Transdução de Sinais
15.
World J Emerg Med ; 12(1): 61-67, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505552

RESUMO

BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stem cells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, the mechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects of BMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation and reperfusion (OGD/R) injury. METHODS: The primary cortical neuron OGD/R model was established to simulate the process of cerebral I/R in vitro. Based on this model, we examined whether the mechanism through which BMSC-sEVs could rescue OGD/R-induced neuronal injury. RESULTS: BMSC-sEVs (20 µg/mL, 40 µg/mL) significantly decreased the reactive oxygen species (ROS) productions, and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Additionally, BMSC-sEVs prevented OGD/R-induced neuronal apoptosis in vivo, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) leakage, decreased terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining-positive cells, down-regulated cleaved caspase-3, and up-regulated Bcl-2/Bax ratio. Furthermore, Western blot and flow cytometry analysis indicated that BMSC-sEV treatment decreased the expression of phosphorylated calcium/calmodulin-dependent kinase II (p-CaMK II)/CaMK II, suppressed the increase of intracellular calcium concentration ([Ca2+]i) caused by OGD/R in neurons. CONCLUSIONS: These results demonstrate that BMSC-sEVs have significant neuroprotective effects against OGD/R-induced cell injury by suppressing oxidative stress and apoptosis, and Ca2+/CaMK II signaling pathways may be involved in this process.

16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(10): 1171-1173, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33198857

RESUMO

OBJECTIVE: To compared the positive rate of anal swab nucleic acid test and clinical characteristics of critical and general coronavirus disease 2019 (COVID-19) patients. METHODS: Clinical data of 18 patients with COVID-19 admitted to the First People's Hospital of Lianyungang City from February to March 2020 were retrospectively analyzed. The patients were divided into general group (n = 11) and critical ill group (n = 7) according to the severity of the disease. The differences of gender, age, epidemiological characteristics, fever duration after admission, underlaying disease, positive rate of anal swab nucleic acid test at admission and two times of negative pharyngeal swab test were compared between the two groups. RESULTS: There were no significant differences in gender, age, fever duration after admission or underlaying disease between the two groups. The number of anorectal swab positive cases in critically ill group was significantly higher than that in general group (cases: 4 vs. 1, P = 0.047). After two negative pharyngeal swab nucleic acid test, the number of anal swab positive cases in critical illness group was still higher than that in general group (cases: 2 vs. 0), but the difference was not statistically significant (P = 0.137). The number of non-local infection in critical ill group was significantly higher than that in general group (cases: 4 vs. 0, P = 0.047). All of the 4 non-local infected patients had a history of living in Wuhan. CONCLUSIONS: The patients with anorectal swab nucleic acid positive may have a more serious condition. It may be a risk to transfer ill patients out of the isolation ward by the criteria of only two times of negative pharyngeal swab nucleic acid test. Patients returning to our city after infection in Wuhan may be more serious.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Humanos , Pneumonia Viral/diagnóstico , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença
17.
J Exp Clin Cancer Res ; 39(1): 225, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33109220

RESUMO

BACKGROUND: Colon cancer represents one of the leading causes of gastrointestinal tumors in industrialized countries, and its incidence appears to be increasing at an alarming rate. Accumulating evidence has unveiled the contributory roles of cancer stem cells (CSCs) in tumorigenicity, recurrence, and metastases. The functions of NF-kappa B (NF-κB) activation on cancer cell survival, including colon cancer cells have encouraged us to study the role of NF-κB in the maintenance of CSCs in colon cancer. METHODS: Tumor samples and matched normal samples were obtained from 35 colon cancer cases. CSCs were isolated from human colon cancer cell lines, where the stemness of the cells was evaluated by cell viability, colony-forming, spheroid-forming, invasion, migration, and apoptosis assays. NF-κB activation was then performed in subcutaneous tumor models of CSCs by injecting lipopolysaccharides (LPS) i.p. RESULTS: We found that NF-κB activation could reduce the expression of miR-195-5p and miR-497-5p, where these two miRNAs were determined to be downregulated in colon cancer tissues, cultured colon CSCs, and LPS-injected subcutaneous tumor models. Elevation of miR-195-5p and miR-497-5p levels by their specific mimic could ablate the effects of NF-κB on the stemness of colon cancer cells in vivo and in vitro, suggesting that NF-κB could maintain the stemness of colon cancer cells by downregulating miR-195-5p/497-5p. MCM2 was validated as the target gene of miR-195-5p and miR-497-5p in cultured colon CSCs. Overexpression of MCM2 was shown to restore the stemness of colon cancer cells in the presence of miR-195-5p and miR-497-5p, suggesting that miR-195-5p and miR-497-5p could impair the stemness of colon cancer cells by targeting MCM2 in vivo and in vitro. CONCLUSIONS: Our work demonstrates that the restoration of miR-195-5p and miR-497-5p may be a therapeutic strategy for colon cancer treatment in relation to NF-κB activation.


Assuntos
Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Idoso , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , NF-kappa B/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Anal Bioanal Chem ; 411(17): 3777-3787, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111181

RESUMO

Photoacoustic spectroscopy in a differential Helmholtz resonator has been employed with near-IR and red diode lasers for the detection of CO2, H2S and O2 in 1 bar of air/N2 and natural gas, in static and flow cell measurements. With the red distributed feedback (DFB) diode laser, O2 can be detected at 764.3 nm with a noise equivalent detection limit of 0.60 mbar (600 ppmv) in 1 bar of air (35-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 2.2 × 10-8 cm-1 W s1/2. Within the tuning range of the near-IR DFB diode laser (6357-6378 cm-1), CO2 and H2S absorption features can be accessed, with a noise equivalent detection limit of 0.160 mbar (160 ppmv) CO2 in 1 bar N2 (30-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 8.3 × 10-9 cm-1 W s1/2. Due to stronger absorptions, the noise equivalent detection limit of H2S in 1 bar N2 is 0.022 mbar (22 ppmv) at 1-s integration time. Similar detection limits apply to trace impurities in 1 bar natural gas. Detection limits scale linearly with laser power and with the square root of integration time. At 16-s total measurement time to obtain a spectrum, a noise equivalent detection limit of 40 ppmv CO2 is obtained after a spectral line fitting procedure, for example. Possible interferences due to weak water and methane absorptions have been discussed and shown to be either negligible or easy to correct. The setup has been used for simultaneous in situ monitoring of O2, CO2 and H2S in the cysteine metabolism of microbes (E. coli), and for the analysis of CO2 and H2S impurities in natural gas. Due to the inherent signal amplification and noise cancellation, photoacoustic spectroscopy in a differential Helmholtz resonator has a great potential for trace gas analysis, with possible applications including safety monitoring of toxic gases and applications in the biosciences and for natural gas analysis in petrochemistry. Graphical abstract.


Assuntos
Ar/análise , Dióxido de Carbono/análise , Sulfeto de Hidrogênio/análise , Gás Natural/análise , Oxigênio/análise , Técnicas Fotoacústicas/métodos , Análise Espectral/métodos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA